1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations

نویسندگان

  • Asegun Henry
  • Gang Chen
  • Steven J. Plimpton
  • Aidan Thompson
  • George W. Woodruff
چکیده

Experiments have demonstrated that the mechanical stretching of bulk polyethylene can increase its thermal conductivity by more than two orders of magnitude, from 0.35 W/mK to over 40W/mK, which is comparable to steel. This strong effect is believed to arise from the increased alignment of the constituent polymer chains, which are thought to have very high thermal conductivity. Although it is well established that bulk polymers have low thermal conductivity, these experiments suggest that cheap, high thermal conductivity polymer materials can be engineered. This type of advancement may provide a much cheaper alternative to the conventional metal-based heat transfer materials that are used today. In order to quantify upper limits on the thermal conductivity of polyethylene, we examine the underlying phonon (lattice wave) transport using molecular dynamics simulations. We first show that the thermal conductivity of individual polyethylene chains is high, and can actually diverge (approach infinity) in some cases. We then discuss how the high thermal conductivity of individual chains is reduced by the presence of additional chains, through van der Waals chain-chain interactions. These intermolecular interactions give rise to both a 2D planar lattice structure and a 3D bulk lattice structure, which allows for the observation of an interesting 1D-to-3D transition in phonon transport. For most crystalline nanostructures, the thermal conductivity decreases with decreasing crystal size from an enhanced boundary scattering of phonons. In the case of polyethylene, however, the intermolecular chain-chain interactions increase phonon-phonon scattering along each chain and actually result in the opposite trend, where the thermal conductivity increases with decreasing crystal size. The results provide important fundamental insight into phonon-phonon interactions and will also aid in the design and structural optimization of high thermal conductivity polymers. Thesis Supervisor: Gang Chen Title: Warren and Towneley Rohsenow Professor of Mechanical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations

In 1955 Fermi, Pasta, and Ulam showed that a simple model for a nonlinear one-dimensional chain of particles can be nonergodic, which implied infinite thermal conductivity. A more recent investigation of a realistic model for an individual polyethylene chain suggests that this phenomenon can even persist in real polymer chains. The reason for the divergent behavior and its associated mechanism,...

متن کامل

Diffusive-Ballistic Heat Conduction along a Single-Walled Carbon Nanotube

The diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has been studied by means of nonequilibrium molecular dynamics simulations. The length dependence of thermal conductivity [1] is quantified for a range of nanotube lengths up to 1.6 μm at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat conduction was identified f...

متن کامل

Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes

Diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has been studied by means of non-equilibrium molecular dynamics simulations. The length-dependence of thermal conductivity is quantified for a range of nanotube-lengths up to a micrometer at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat conduction was identified fr...

متن کامل

Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons

Investigations of diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes and nanographene ribbons at room temperature have been carried out by using nonequilibrium molecular dynamics simulations. The length dependences of thermal conductivity reveal the variation of the balance between ballistic and diffusive heat conduction. For both systems, the profile indicates ...

متن کامل

Crystalline-Amorphous Interface: Molecular Dynamics Simulation of Thermal Conductivity

Effect of a crystalline-amorphous interface on heat conduction has been studied using atomistic simulations of a silicon system. System with amorphous silicon was created using the bond-switching Monte Carlo simulation method and heat conduction near room temperature was studied by molecular dynamics simulations of this system. INTRODUCTION As the sizes of electronic devices decrease an increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009